

्री इसवे गिडन्व	INDIAN SPACE RESEARCH ORGANISATION	Page 1 of 18	
		ſ	

2	A si	ignal source with 100m wavelength is connected to the input terminals of a 150m long
	tran	ismission line terminated in its characteristic impedance. The phase difference between the
	volta	ages at two ends of the transmission line in steady-state condition is:
	a)	2π b) 3π
	c)	4π d) π
3	A ch	harge $Q_2 = 8.854 \times 10^{-9}$ C is located in a vacuum at P_2 (2,3,1). The force on Q_2 due to a charge
	$Q_1 =$	$=4\pi \times 10^{-3}$ C at P ₁ (2,2,1) is: (Note: All the coordinates are measured in Meters. a_x , a_y and a_z
	are i	unit vectors in X, Y and Z direction respectively.)
	2)	a _v N b) -a _v N
	a)	
4	c)	7 7 7 2
4		ow pass filter as shown in following figure is built using an operational amplifier having
	unit	ty gain bandwidth of 1MHz. What is the bandwidth of this circuit?
		,, 160pF
		10K
		100Ω
		(A) + (
	a)	1 KHz b) 10 KHz
	(c)	100 KHz d) 500 KHz
5	Wh	nat is the frequency and duty cycle of output Y, when CLK frequency is 1MHz $@$ 50% duty
	eye	le?
		Y
ļ		
		CLK
	(a)	500 KHz @ 50% duty cycle b) 500 KHz @ 25% duty cycle
1		

इससे डिन्ट	INDIAN SPACE RESEARCH ORGANISATION	Page 2 of 18

d)

250 KHz @ 50% duty cycle

250 KHz @ 25% duty cycle

	EC	TI	\sim	N.	ICS.	•	20	13
ΓL	ÆΥ	. 11	\sim	1.	にこう		_0	L

· SET -A

6	For an isotropic radiator, electric field intensity at a distance R is measured as 3V/m. What will be the electric field intensity at a distance 3R?					
	a)	1 V/m		b)	$\frac{1}{3}$ V/m	
	c)	$\frac{1}{9}$ V/m	•	d)	3V/m	
7	The l	ogic function im	plemented by following	4:1 MUZ	X is	
-		- ~ ·	-X — I ₀ Y — I ₁ X — I ₂ O — I ₃	<u>z</u>		
		G 37 137	X (MSB) Y (LSB)	T.,		
<u> </u>	a)	Z = X and Y		<u>p)</u>	Z = X or Y	
	c)	Z = X xor Y		d)	Z = X xnor Y	
8					n line at 10KHz is 200-j50 ohms. Line is	
			racteristic impedance, ower supplied by the sig		3.28V p-p signal is measured at its input.	
	a)	0.5 W	ower supplied by the sig	b)	0.485W	
	c)	0.47 W		d)	0.25 W	
9			waveform across capac			
	***	in is the correct	waverorm across capac		cronowing en eure.	
•		5 Vrms 50 Hz			10nF 1K	
	a)			b)		
	c)			d)		

इसरो डिन्ट	INDIAN SPACE RESEARCH ORGANISATION	Page 3 of 18

10	Input voltage applied to a circuit is 1V rms and the output is 1mV rms. Net gain of the circuit is:						
	a)	+ 30dB ·	b)	- 30dB			
	c)	- 60dB	d)	+ 60dB			
11	Two ideal quantizers A and B have following specifications: A: 5 bit Quantizer with input dynamic range of -1V to +1V with Q1 as quantization noise power B: 8 bit Quantizer with input dynamic range of -0.5V to +0.5V with Q2 as quantization noise power. Then Q1/Q2 will be						
	.a). ·	16	b).	256 -			
	c) .	64	d)	128			
12	The d	ivergence of magnetic field intensity is					
	a)	Electric charge density	b)	Electric field intensity			
	c)	Zero	d)	Conduction current density			
13	A UART is configured to transmit 8 bit data, 1 start bit and 1 stop bit. The serial data output is observed on oscilloscope, which looks like a square wave with frequency of 9600 Hz. What is the baud rate and transmitted data?						
	a)	Baud rate = 9600, Data = 55h	b)	Baud rate = 19200, Data = 55h			
1.4	c)	Baud rate = 19200, Data = FFh	d)	Baud rate = 9600, Data = AAh			
14	100K		ue of rm	of 50ohms has to deliver 10KW power at s current anywhere along the line is 20A. In this line?			
	a)	2	b)	1			
	c)	3	d)	2.5			
15	Routh	n Hurwitz criterion is used to determine	e				
	a)	Relative stability of the system	b)	Time response of the system			
	c)	Absolute stability of the system	d)	Roots of the characteristic equation graphically			
16	signa	lecoding circuit shown in the figure is had been determined to 8 bit micropres and size of memory? A15 — A14 — A13 — A14 — A1		used to generate active low chip select with 16 bit address bus. What is address			
	6)	A12 H	/ b)	DOOOL to DEECh size- 4V Dots			
<u></u>	a)	D000h to EFFFh, size= 8K Bytes	b)	D000h to DFFFh, size= 4K Bytes			
	c)	C000h to FFFFh, size= 16K Bytes	<u>d)</u>	E000h to EFFFh, size = 4K Bytes			

,
*-,\$
इसरो डिन्ट
2441 (12LD

Page 4 of 18

17	If the waveguide cross-section of a square waveguide with TE11 propagation mode is gradually deformed into a circle, then the corresponding circular waveguide mode will be:						
	a)	TE11	b)	TE10			
	c)	TE21	d)	TE12			
-18	Wha	t could be the output current rating of f	ollowing	shunt regulator?			
		50Ω		- ○ ••••			
	·	10V - 5V - 0.4W -	7				
		÷ 0.477 ÷	-	e para una Manana			
			·				
	a)	$0 < I_L < 100 \text{mA}$	b)	$20 \text{mA} < I_L < 100 \text{mA}$			
	c)	$0 < I_L < 50 \text{mA}$	d)	$10 \text{mA} < I_L < 100 \text{mA}$			
19	An F	M-CW (Frequency Modulated – Contin	uous Wa	eve) Radar is essentially			
	a)	Bistatic	b)	Monostatic			
	c)	Can operate either as monostatic or as bistatic	d)	None of the above			
20	I esta	flux in a magnetic core is sinusoidally va and eddy current loss is 15 W. If the fr ity reduced to 1 Tesla, the eddy current	equency	200 Hz. The maximum flux density is 2 is raised to 400 Hz and maximum flux			
	a)	Reduce to half	b)	Get doubled			
	c)	Reduce to one-fourth	d)	Remain same			
21	The e	electric field intensity E and magnetic fic pace in x and y direction respectively, the	eld intens he Poynfi	ity H are coupled and propagating in ing vector is given by			
	a)	EHx	b)	<i>EH</i> ŷ			
)	c)	<i>EH</i> x̂ŷ	d)	None of the above			
22	If x and y are two random signals with zero mean Gaussian distribution having identical standard deviation, the phase angle between them is						
	a)	Zero mean Gaussian distributed	b)	Uniform between $-\pi$ and π			
	c)	Uniform between $-\pi/2$ and $\pi/2$	d)	Non-zero mean Gaussian distributed			
23	The c	current flowing through a capacitor in a	n AC cir	cuit is:			
	a)	Non-existent	b)	Conduction current			
	a) c)	Non-existent Displacement current	d)	Conduction current None of the above			

इससे डिन्ट
i

Page 5 of 18

24			n for Maj	jority Voting, assuming A,B,C are inputs					
		is output?	b)	Y= A+B+C					
	a)	Y = AB + AC + CB	d)	Y = AB + BC					
2-	c)	Y= ABC							
25	For broadside antenna array, the largest possible spacing between the antenna elements without any grating lobes is								
	a)	<i>λ</i> /2	b)	λ					
	c)	2 λ	d)	None of the above					
26	3000 3002 3003 3004 3005	ition of the program is MVI A, 45H		, the content of the accumulator after the					
	a)	00H	b)	45H					
	c)	67H	d)	E7H					
27	Conc	duction angle of a Class AB amplifier is							
	a)	<180°	b)	Between 180° and 360°					
	c)	360°	d)	90°					
28	For	non dispersive medium							
	a)	Phase velocity > Group velocity	b)	Phase velocity < Group velocity					
	c)	Phase velocity = Group velocity	d)	None of the above					
29	Scho	ottky clamping is resorted in TTL gates							
	a)	to reduce propagation delay	b)	to increase noise margins					
	c)	to increase packing density	d)	to increase fan-out					
30	At c	ut-off frequency, the phase velocity of a	wavegui						
	a)	Zero	b)	Infinite					
	(c)	Finite	d)	None of the above					
31	A Z	ener diode, when used in voltage stabiliz	zation cir	cuits, is biased in					
	a)	reverse bias region below the breakdown voltage	b)	reverse breakdown region forward bias constant current mode					
	c)	forward bias region	d)	101 ward bias constant current mode					

	INDIAN SPACE RESEARCH ORGANISATION	Page 6 of 18
V		

The closed loop frequency response of a dc-dc converter is shown in following figure. What are the gain and phase margins? 30 180 Gain 20 120 10 60 Gain (dB) 0 -10 -60 -20 -120 -30 -180 20dB, 80° a) 26dB, 80° b) c) 20dB, 120° 26dB, 120° d) If for a silicon npn transistor, the base-to-emitter voltage (VBE) is 0.7V and the collector-tobase voltage (VCB) is 0.2 V, then the transistor is operating in the normal active mode saturation mode b) inverse active mode cutoff mode d) 3 port Circulator is Reciprocal, matched b) Non reciprocal, unmatched Non reciprocal, matched d) Reciprocal, unmatched An 8 bit ripple counter and an 8 bit synchronous counter are made using flip flops having a propagation delay of 10 ns each. If the worst case delay in the ripple counter and the synchronous counter be R and S respectively, then R = 10 ns, S = 80 nsa) R = 40 ns, S = 10 nsb) R = 10 ns S = 10 nsc) d) R = 80 ns, S = 10 ns36 Gain of an RC low pass filter having a time constant ' τ ' and frequency ' ω ' is: a) $\sqrt{1+(\omega\tau)^2}$ b) $1/\sqrt{1+(\omega\tau)^2}$ c) $\omega \tau / \sqrt{1 + (\omega \tau)^2}$ d) $\omega \tau / \sqrt{1 - (\omega \tau)^2}$

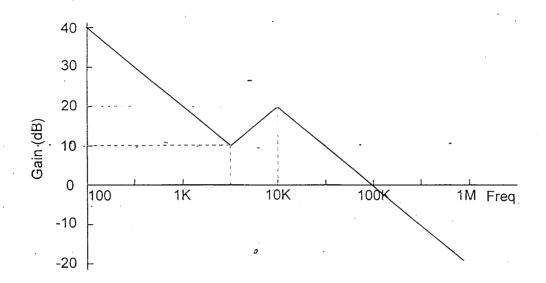
_ 1
A
इसंग्रे डिन्ट

INDIAN SPACE RESEARCH ORGANISATION

Page 7 of 18

				ID) D (I' - ti-it-in ID) C (coupling in	
37		For a directional coupler, the quantities I (isolation in dB), D (directivity in dB), C (coupling in			
	dB)	are related by		T D C	
	a)	I=C/D		I = D - C	
	c)	I = D + C	d)	I= D/C	
38	The	two numbers represented in signed 2's o	ompleme	nt form are $P = 11101101$ and $Q =$	
	1110	00110. If Q is subtracted from P , the value			
	a)	100001111	b)	0000111	
	c)	11111001	d)	111111001	
39	Dep	letion type MOSFET operates in:			
	a)	Depletion Model only	b)	Enhancement Mode only	
	c)	Both depletion and enhancement mode	d)	None of the above	
40	Elec	ctric Field and Magnetic Field are perpe	ndicular t	o each other in :	
····	a)	Klystron	b)	Magnetron	
	c)	TWTA	d)	All of the above	
41	1 - 1		te compoi	nents as shown below. What is the output	
-11	3	age?	te compo.	The state of the s	
	Voit	age.			
		10V 2.5V) 4mA	1K 2K	
	a)	9.3 V	b)	7.5 V	
	c)	0 V		2.5 V	
42	If range of a radar is to be doubled, the peak transmit power of the radar has to be:				
	a)	Increased by a factor of 2	b)	Increased by a factor of 4	
	c)	Decreased by a factor of 4	d)	Increased by a factor of 16	
43	Th	e electric field measured in the far field e erage power densities at a distance of 500	of an ante Im from t	nna at a distance of 50m is 1V/m. The he antenna is	
-		26.6μW/m ²	b)	$0.1\mu \text{W/m}^2$	
-	(a)	20.0μ W/III	(d)	13 3uW/m ²	

Page 8 of 18


	, ·			
44	Ifac	ounter having 10 Flip Flops is initially	at 0, what	t count will it hold after 2060 pulses ?
	a) -	000 000 1100	b)	000 001 1100
	c)	000 001 1000	d)	000 000 1110
45	For	a frequency modulated signal repre	sented by	$s(t)=10\sin(6 \times 10^8 t + 2\sin 100\pi t)$. The
	maxi	mum frequency deviation in the carrie	r from its	unmodulated frequency is:
L	a)	990Hz	b)	100Hz
-	c)	50Hz	d)	200Hz
46	For v	which of the following conditions, the	circuit sh	own below will function as precision full
	wave	rectifier?		
		Vin O	F	R3 Vo
	a)	R1 = R2 = R	b)	R1 = R3 = R
	c)	R2 = 2R1	d)	R1 = R2 = R3
47	Inar	nonostatic radar, if the antenna apertu	re is doub	
	a)	Reduce by a factor of 2	b)	Increase by a factor of 2
	c)	Reduce by a factor of $\sqrt{2}$	d)	Increase by a factor of $\sqrt{2}$
48	The d	lisadvantage of single stub matching is	that	,
	a)	Every load needs a new stub position	b)	Only shunt stub should be used
	c)	Only resistive load can be matched	d)	Useful only in two wire transmission line
49	A cer	tain antenna with an efficiency of 95%	has maxi	mum radiation intensity of 0.5 W/sr. The
	directivity of the antenna fed by input power of 0.4 W			
	a)	16.53	b)	12.2
	c) .	10.36	d)	11.31
50	A me	mory system of size 16 K bytes is requi	red to be	designed using memory chips which have
i	12 ac	ldress lines and 4 data lines each. Tl	nen numb	er of such chips required to design the
	mem	ory system is		_
	a)	2	b)	4
1	c)	8	d)	16

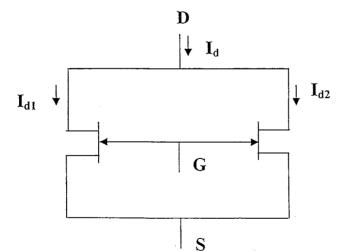
A	
इसरी डिन्ट	

Page 9 of 18

In the asymptotic bode plot of a transfer function of a closed loop system shown below, the number of poles and zeros are,

ı	 	·		
-	a)	3 pole, 2 zero	b)	2 pole, 2 zero
	c)	2 pole, 1 zero	d)	3 pole, 1 zero

Plane Wave travelling in free space has an average Poynting vector of 3W/m². Average energy density (nJ/m³) of the wave is:


 a)
 10

 b)
 5

 c)
 1

 d)
 3

For two identical n-channel JFET's connected in parallel as shown in fig. below, the pinch-off voltage of equivalent JFET is:

इसरो डिन्ट

INDIAN SPACE RESEARCH ORGANISATION

Page 10 of 18

	a)	Doubled '	b)	Becomes half		
	c)	Remains same	d)	None of the above		
54	The velocity at which a sinusoidal signal of 10^9 rad/s travels down a loss-less transmission line for which L=0.4 μ H/m and C=40 pF/m is					
	a)	$2.36 \times 10^8 \text{ m/s}$	b)	$2.5 \times 10^8 \text{m/s}$		
	c)	5 x10 ⁹ m/s	d)	4.5x10 ⁹ m/s		
55	The	Maxwell's equation $ abla imes \overline{E} = -rac{\partial P}{\partial P}$	∂ <u>B</u> ∂t is obtair	ned from :		
	a)	Ampere's Law	b)	Faraday's Law		
	c)	Lenz's Law	d)	Both b and c		
56		ssless line having characteristic important VSWR of the line will be:	edance Zo	is terminated with a load impedance of		
	a)	1	b)	10		
	c)	Infinite	d)	None of the above		
57 A signal 1 + cos(2πft) + cos (6πft) where f=1MHz is sampled at 3MHz and Fourtransform is carried out. How many lines will be seen in Fourier Transform?						
	a)	5	b)	1		
	c)	3	d)	2		
58	The array factor of an array antenna depends on					
	a)	Number of radiating elements	b)	Spacing between the elements		
	.c)	Phase of the applied signal	d)	All of the above		
59	Whi	ich of the following parameter is imp	proved by i	ntroducing pipelining in digital design?		
	a)	Area (Gate count)	b)	Maximum clock frequency		
•	c)	Power dissipation -	d) .	. Noise		
60 A transmission line having characteristic impedance 'Z _t ' of varying len load impedance 'Z _L ' appears in a Smith Chart on:						
	a)	Constant Resistance Circle	b)	Constant VSWR Circle		
	c)	Constant Reactance Circle	d)	All of the above		
61	Imp	edance characteristics on a Smith C	hart repea	at after a distance of:		
	a)	λ	b)	λ/4		
	1					

-A	
इसरो डिन्ट	

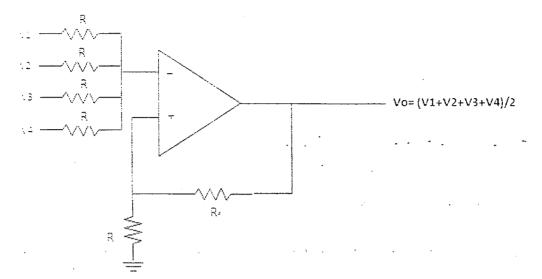
Page 11 of 18

62	If τ is the time constant and ω is the applied frequency, a low pass RC filter acts as a pure					
	integrator when:					
	a)	ωτ=0	b)	ωτ>> 1		
į	c)	$\omega \tau = 1$	d)	ωτ<<		
63				ing of a high frequency transformer		
			:2. What is	s the value of capacitance seen across		
	prima					
	a)	4μF	b)	62.5μF		
	c)	25μF	d) ·	1.6µF		
64	What	will be the output of the following ci	rcuit, if poi	nt-P is stuck at 1?		
	. A —					
	_					
	В —					
	c—	P //				
	0					
	a)	A+B+C	b)	A'B'C'		
	c)	(ABC)'	d) .	0		
65	For tl	ne current mirror circuit shown below	w, if the em	litter area of Q2 is thrice of Q1, the		
	curre	nt I is: $V_{C}=+10V$				
	•					
		R = >				
		20ΚΩ		† 1		
		Q ₁		Q 2		
				4		
	_ •					
	V_{E} =-10V					
	-1	0.229 A	1-1	2.055 m 4		
	a)	0.328mA	b)	2.955mA		
	c)	0.105mA	d)	0.012mA		
66		ut of an Op-amp is 1V peak, and slev		/µs. I ne maximum frequency of		
<u> </u>	1	sinusoidal signal that can be reprod	T	796Hz		
<u> </u>	a)		b)			
1	(c)	796KHz	d)	398KHz		

इसरो डिन्ट	INDIAN SPACE RESEARCH ORGANISATION	Page 12 of 18
1		

67	What is the division factor of the following clock divider circuit?
	CLK_IN Q'
	-CLK_OUT
	α.
	a) 2 . b) 3 .
	c) 1.5 d) 2.5
68	For the circuit given below, the voltage Vo across the op-amp output is:
	50Ω
	10Ω
	$\frac{10\Omega}{\Lambda}$
	V_i + V_i
	$ V_{c} \gtrsim 10 \Omega$
	↓ _

-	a) -9Vi b) -3Vi
	c) -11Vi d) 9Vi
69	The rms value of current $i(t) = I_1 Sin\omega t + I_2 Sin2\omega t$ is:
	a) $(I_1^2 + I_2^2)^{1/2}$ b) $(I_1^2/2 + I_2^2/2)^{1/2}$
	c) $(I_1^2/2 + 2I_2^2)^{1/2}$ d) $(I_1^2 + 4I_2^2)^{1/2}$

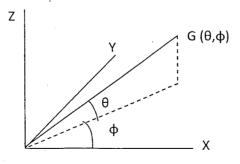

इसरो डिन्ट

INDIAN SPACE RESEARCH ORGANISATION

Page 13 of 18

Given the output for the following non-inverting summing amplifier, the relation between R_f and R in the circuit is:

L	 			
	a)	$R_t=R$	b)	$R_f=4R$
	c)	$R_f=2R$	d)	$R_f = R/2$

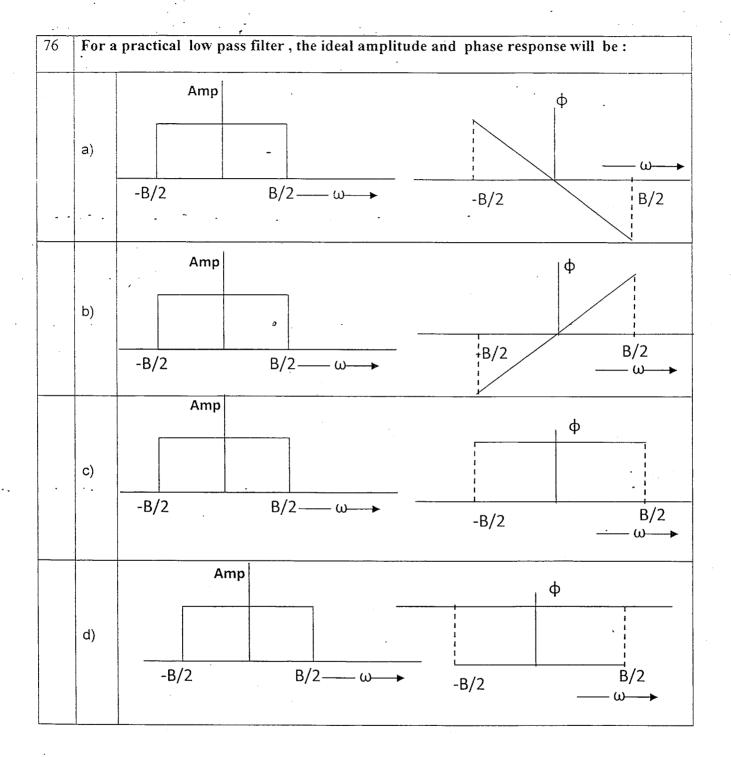

71 A pulse signal having 100 kHz frequency and 70 nsec rise time is to be measured on an oscilloscope. The minimum required bandwidth of the oscilloscope is,

a)	500 kHz	b)	14.3 MHz
c)	5 MHz	d)	200 kHz

72 Multiple collectors are used in Traveling Wave Tube (TWT) to:

aj)	To distribute the dissipated heat evenly	p)	To increase the overall efficiency
c)	To increase the gain of the TWT	d)	To shape the electron beam

A lossless antenna has directional gain $G(\theta, \varphi)$, then $\int_{\varphi=-\pi/2}^{\varphi=\pi/2} \int_{\theta=-\pi/2}^{\theta=\pi/2} G(\theta, \varphi) d\theta d\varphi$ is:


A	
इसरो डिन्ट	

INDIAN SPACE RESEARCH ORGANISATION

Page 14 of 18

			.,					
	a)	4π	b)	$ 2\pi $				
-	c)	$\leq 4\pi$	d)	$\leq 2\pi$				
74	$\sqrt[3]{Cosx - jSinx}$ is equal to							
	a)	$(\cos x)^{1/3} - j(\sin x)^{1/3}$	b)	$\sqrt[3]{\cos^2 x - j\sin^2 x}$				
	c) -	$\cos\frac{x}{3} - j\sin\frac{x}{3}$	d)	$\sin\frac{x}{3} - j\cos\frac{x}{3}$				
75			and samplin	g frequency fs is 25KHz, the output				
-	will be: 8bit A/D D/A Output							
		fs , Sampling Free	quency					
	a)	0V	b)	DC value anywhere between -1V and +1V				
	c)	DC value anywhere between - 0.5V and +0.5V	d)	1Vp-p 1MHz sinusoid				

इसरी डिन्ट	INDIAN SPACE RESEARCH ORGANISATION	Page 16 of 18

77 ·	A 10	A 10dB attenuator is put at the input of a low noise amplifier having 3dB noise figure. Now the noise figure of the cascaded amplifier will be					
	a)	3dB	b)	12dB			
	c)	7dB	d)	None of the above			
78	+	<u> </u>	<u> </u>	ne input of an Spectrum Analyzer.			
	Wha	t will be observed?	15 104 10 11	ne input of an Spectrum Analyzer.			
	a)	2 nd , 5 th , 8 th harmonics missing	b)	3 rd , 6 th , 9 th harmonics missing			
	c)	1 st , 4 th , 7 th harmonics missing	d)	All the harmonic present			
79	Phase	e function of a filter is $(f) = kf^2, k$	> 0 . The gro	oup delay of the filter has the shape			
	a)	Gro	oup Delay				
	b)		Group Delay —— f —				
	c)		Group D	elay f —			

इसरो डिन्ट

Page 17 of 18

	ONIC		

SET-A

		, Group Delay
-	d)	
		f
80	1V n	p sinusoid is digitized by a 4 bit A-to-D converter with input dynamic range of 2V
		The signal to noise ratio of the digitized signal is:
	p-p.	The signal to noise ratio of the digitized signal is:
	р-р. а)	The signal to noise ratio of the digitized signal is: 384

End of questions

इसरो डिन्ट	
2444 134.0	

INDIAN SPACE RESEARCH ORGANISATION

Page 18 of 18

